
Laws, Principles & Practices for Microservices Architecture

Alex Bolboaca
CTO, Trainer & Coach @ Mozaic Works

2

A Revolution!

We can write in any programming
language we like

We work on small things and it will
be so much nicer

No testing

We will work faster

Photo by Sam Schooler on Unsplash

https://unsplash.com/@sam?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/E9aetBe2w40?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

3

At SoCraTes UK 201?

● What are microservices?
● How large are they?
● How do they

communicate?
● What issues will we face

using them?

Photo by Vadim Bogulov on Unsplash

https://unsplash.com/@franku84?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/E9aetBe2w40?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

4

So, what are microservices?

5

Modular Architecture

● Strong Boundaries
● Replaceable
● Clear Responsibilities

6

Module Deployment

● In a namespace with a Facade (a bit forced)
● Library
● OS Service
● Remote service
● [New] Modules as first class citizens in programming

languages

7

Microservices are

Just another iteration of modular distributed
architecture,

Taking advantage of advances in automation
and cloud services

8

Back to the fundamentals!

Photo by Paul Kramer on Unsplash

https://unsplash.com/@pjklimtx?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/E9aetBe2w40?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

9

So, a few laws

● The first law of software architecture
● The law of conservation of complexity
● The CAP Theorem
● Conway’s Law
● Low coupling, high cohesion

10

The first law of software architecture

 Everything in Software Architecture is
A Trade-Off

Mark Richardson & Neal Ford,

Fundamentals of Software Architecture

11

Corollary

 If an architect thinks they have discovered
something that isn’t a trade-off, they haven’t

identified the trade-off yet

Mark Richardson & Neal Ford,
Fundamentals of Software Architecture

12

Second Law of Software Architecture

Why is more important than how

Mark Richardson & Neal Ford,
Fundamentals of Software Architecture

13

Fred Brooks

● Author of “The Mythical
Man-Month”

● Turing Award in 1999
● Died on 17 Nov 2022
● We did a video in his honor

https://www.youtube.com/
watch?v=1XIWZyplgrM

https://www.youtube.com/watch?v=1XIWZyplgrM
https://www.youtube.com/watch?v=1XIWZyplgrM

14

Complexity

Two types of complexity:
* essential – aka the problem complexity
* accidental – aka the solution complexity

Essential complexity is irreducible

15

Alex’s Addendum

Accidental complexity tends
to move around the system

Microservices move
complexity from

development to operations
and debugging

Source: https://liberationchiropractic.com/wp-content/uploads/2016/06/Whackamole.jpg

https://liberationchiropractic.com/wp-content/uploads/2016/06/Whackamole.jpg

16

Conway’s Law

Any organization that designs a system (defined
broadly) will produce a design whose structure is

a copy of the organization’s communication
structure.

 Melvin E. Conway, How Do Committees Invent?, 1968

http://www.melconway.com/Home/Committees_Paper.html

17

Conway’s Law Applied to Microservices: Fred George

● Low coupling between
microservices (aka events)

● Low coupling => low
communication between
microservices devs

● High parallelization of work
● If microservices are defined

18

CAP Theorem

It is impossible for a distributed data store to
simultaneously provide more than two out of the

following three guarantees:

Consistency
Availability

Partition tolerance

19

Explain CAP

● Consistency: Every read receives the most recent write or an
error

● Availability: Every request receives a (non-error) response,
without the guarantee that it contains the most recent write

● Partition Tolerance: the system continues to operate
despite an arbitrary number of messages being dropped (or
delayed) by the network between nodes

20

CAP Theorem for Microservices

● We need availability
● We need partition

tolerance
● => Relax consistency
● => Eventual consistency

Photo by Pierre Bamin on Unsplash

https://unsplash.com/ko/@bamin?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/E9aetBe2w40?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

21

Low Coupling, High Cohesion

● Low coupling between microservices
● High cohesion inside a microservice
● For performance reasons, we can use higher coupling

within a bounded context

22

Connascence

Connascence is a software quality metric & a
taxonomy for different types of coupling.

23

3 Axes of Connascence

● Strength. Stronger connascences are harder to discover, or
harder to refactor.

● Degree. An entity that is connascent with thousands of
other entities is likely to be a larger issue than one that is
connascent with only a few

● Locality. Connascent elements that are close together in a
codebase are better than ones that are far apart.

24

High coupling / connascence => Dependency Hell

Source: turbosquid.com

https://p.turbosquid.com/ts-thumb/m1/TTPlk9/IjdtXGFw/jengafallingtowermb3dmodel001/jpg/1563121867/600x600/fit_q87/560ae8fb2462deda1f39a5e6b743ea48bd2c24a9/jengafallingtowermb3dmodel001.jpg

25

How to architect microservices?

● Domain modeling to identify bounded contexts and
domain entities

● Build services around behavior
● Low coupling between bounded contexts
● If performance is needed, slightly higher coupling within a

bounded context

26

Simple Example of Domain Modeling

27

Levels of REST APIs

Most organizations are here

Lower coupling

Source: Restcase.com

https://blog.restcase.com/content/images/2018/11/richardson-maturity-model---Copy.png

28

Microservices and OOP

● OOP is not class-oriented programming!
● Alan Kay reinterpreting OOP: “every object should have a

url”
● Microservices combine data (data stores) and behavior

(implementation)
● Similar to the SmallTalk environment

29

What have we learned?

Photo by Ilse Orsel on Unsplash

https://unsplash.com/@lgtts
https://unsplash.com/photos/E9aetBe2w40?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

30

Folklore

Learning in software
development happens

through folklore

Photo by Karla Vidal on Unsplash

https://unsplash.com/@karlavidal
https://unsplash.com/photos/E9aetBe2w40?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

31

Short-termism

● Disregard for what came
before

● Lack of knowledge about
history

Photo by Rachel Hisko on Unsplash

https://unsplash.com/@rachelhisko?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/E9aetBe2w40?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

32

Dire Need of Simplicity

● We feel the need to
remove the accidental
complexity

● … but go for utopia

Photo by Samantha Gades on Unsplash

https://unsplash.com/de/@srosinger3997?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/E9aetBe2w40?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

33

Instead...

● Focus on fundamentals
that don’t change

● Look at past iterations of
the same problem

● Learn other people’s
problems

● Don’t blindly copy large
organizations Photo by Marc-Olivier Jaudoin on Unsplash

https://unsplash.com/@marcojodoin?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/E9aetBe2w40?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

34

Remember to

Think. Design. Work Smart.

https://mozaicworks.com
https://youtube.com/@tdws

https://mozaicworks.com/
https://youtube.com/@tdws

35

Learning Programs

● Architecting Microservices
● From Developer to Architect
● Software Architecture Principles
● Serverless Architecture
● Native Cloud Architecture

36

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

